3x(x+4) ≤0 (x-2) решим методом интервалов значения х обращающие числитель и знаменатель в 0 это х={-4, 0, 2} рассмотрим знак выражения при х принадлежащих интервалам 1) при х∈(-∞,-4) возьмем какое-либо значение из этого интервала например -5 и вычислим значение выражения 3(-5)(-5+4)/(-5-2)=-15/7<0 знак - 2) при х∈(-4, 0) например х=-2 , 3(-2)(-2+4)/(-2-2)=12/2>0 знак + 3) при х∈(0,2) например х=1 , 3*5/(1-2)=-15<0 знак - 4) при х∈(2,+∞) например х=3 3*3(3+7)/(3-2)>0 знак + выберем те интервалы у которых знак - значения которые обращают числитель в 0 включим, которые обращают знаменатель в 0 исключим х∈ (-∞;-4]U[0;2)
а) х= -0,09 б) х= -4 в) х = -1,5
Объяснение:
а) - 0,8x = 0,072
х= 0,072/(-0,8)
х= -0,09
Проверка
- 0,8 *(-0,09) = 0,072
0,072 = 0,072
б) 3,7х + 12,5 = -1,3х – 7,5;
3,7х +1,3х= -12,5-7,5
5х= - 20
х=-4
Проверка
3,7 *(-4) + 12,5 = -1,3*(-4) – 7,5
-14,8+12,5= 5,2-7,5
-2,3 = - 2,3.
в) 2x – (3,8 +7,4x) = 11,2 + 4,6х
2x – 3,8 -7,4x = 11,2 + 4,6х
2х- 7,4х -4,6х = 3,8 +11,2
-10х = 15
х = -1,5
Проверка
2* (-1,5) – (3,8 +7,4* (-1,5)) = 11,2 + 4,6*(-1,5)
-3 -3,8+ 11,1 = 11,2 -6,9
4,3= 4,3