Объяснение:
Войти
АнонимМатематика11 июля 20:08
Найдите промежутки возрастания и убывания, наименьшее значение функции у = x2- 4х - 5
ответ или решение1
Лебедев Яков
Имеем функцию y = x^2 - 4 * x - 5.
Найдем промежутки возрастания, убывания и наименьшее значение функции.
Для начала находим производную функции:
y' = 2 * x - 4.
Промежуток возрастания- промежуток функции, где каждому большему значению аргумента соответствует большее значение функции. На промежутке возрастания производная функции больше нуля.
2 * x - 4 > 0;
x > 2 - промежуток возрастания функции.
Соответственно, для промежутка убывания получаем:
2 * x - 4 < 0;
x < 2 - промежуток убывания функции.
x = 2 - ноль функции. Найдем значение функции от данного аргумента:
y = 4 - 8 - 5 = -9 - наименьшее значение функции.
) Рассмотрим точки пересечения данной функции у = - 2 * х + 6:
с осью ОХ. Для этого в формулу функции вставим значение у = 0, тогда (-2 * х + 6) = 0; 2 * х = 6, х = 3;
с осью ОУ. Для этого в формулу функции вставим значение х = 0, тогда получим: у = (-2) * (0) + 6 = 0 + 6 = 6.
Таким образом мы получили следующие точки пересечения с осями координат: с ОХ точка А(3; 0), с ОУ точка В(0;6).
б) проверим точку М(15, -24), подставив значения у = -24 и х = 15 в формулу.
-24 = (-2) * 15 + 6 = -30 + 6 = -24.
Значит, точка М принадлежит графику