Так как все три встречи произошли когда парни бежали друг к другу то их скорости складываются. Следовательно если принять расстояние между деревьями за х то скорость одного будет V1= 300/t ; А скорость второго V2=(х-300)/t так как 3-я встреча произошла на расстоянии 400м от сосны значит Бегун бежавший изначально от сосны успел пробежать (х-300)+х+400=2х+100; А второй бегун соответственно 2х-100;учитывая скорости бегунов найдем t3=(2x+100)/(300/t)=(2x+100)*t/300 В тоже время для второго бегуна t3=(2x-100)/((x-300)/t)=(2x-100)*t/(x-300)приравняв получим (2х+100)/300=(2х-100)/(х-300) (2x+100)(x-300)=(2x-100)*300 2x^2+100x-600x-30000=600x-30000; 2x^2-1100x=0 x(2x-1100)=0 x0 или 2х-1100=0 х=550метров!
Так как члены представляют собой арифметическую прогрессию, то a2=a1+d, a5=a1+4d, где d - знаменатель арифметической прогрессии. Но так как эти же члены являются членами геометрической прогрессии, то a2=a1*q и a5=a1*q², где q - знаменатель геометрической прогрессии. По условию, a2+1=a1+1+d1, a5-3=a1+1+2d1, или a2=a1+d1, a5=a1+4+2d1. Из первого уравнения находим d1=d. Так как a5=a1+4d, то из второго уравнения следует уравнение 4d=4+2d, откуда d=2. Теперь, заменяя a2 на a1+2 и a5 на a1+8, получаем уравнения a1+2=a1*q, a1+8=a1*q². Из первого уравнения следует a1=2/(q-1). Подставляя это выражение во второе уравнение, приходим к квадратному уравнению q²-4q+3=0. Дискриминант D=(-4)²-4*1*3=4=2². Отсюда q=(4+2)/2=3 либо q=(4-2)/2=1. Но если q=1, то все члены геометрической прогрессии, а с ней и все члены исходной арифметической прогрессии, были бы равны, что было бы возможно лишь при d=0. Но так как d=2≠0, то q≠1. Значит, q=3. Тогда a1=2/(3-1)=1, и искомая сумма S100=100*(a1+a100)/2=50*(a1+a100). Но a100=a1+99d=1+99*2=199, и тогда S100=50*(1+199)=10 000. ответ: 10 000.
Объяснение:
на листе