М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ОляОля123456789
ОляОля123456789
10.08.2020 04:46 •  Алгебра

1) р(х)=х²-5х+8
2) р(х)=10-3х-х²​

👇
Открыть все ответы
Ответ:
dostovalovaanast
dostovalovaanast
10.08.2020

Объяснение:

Для того чтобы показать, что число является составным достаточно показать, что оно у него есть делители помимо 1 и самого себя. Для начала надо понять на какое число заканчивается 2^{1234}. Для этого нужно понять на какую цифру заканчиваются степени двойки:

2^1 \rightarrow 2\\2^2 \rightarrow 4\\2^3 \rightarrow8\\2^4 \rightarrow 6\\2^5 \rightarrow 2

Таким образом последняя цифра в степенях двойки может быть только из множества {2, 4, 8, 6}, которое будет циклически повторяться. Дальше надо понять остаток от деления 1234 на 4. 1234 : 4 = 308 и остаток 2. Значит последния цифра у нас совершит 308 полных циклов и еще 2 шага. Таким образом число 2^{1234} заканчивается на цифру 4. Следовательно 2^{1234} + 1 заканчивается на цифру 5, а значит это число делится на 5 и как факт является составным.

4,8(4 оценок)
Ответ:
14251714
14251714
10.08.2020

чтобы наи­боль­шее зна­че­ние дан­ной функ­ции было не мень­ше 1, не­об­хо­ди­мо и до­ста­точ­но, чтобы она в какой-то точке при­ня­ла зна­че­ние 1.

если наи­боль­шее зна­че­ние функции не мень­ше еди­ни­цы, то по не­пре­рыв­но­сти в какой-то точке будет зна­че­ние еди­ни­ца. если же наи­боль­шее зна­че­ние мень­ше еди­ни­цы, то зна­че­ние еди­ни­ца при­ни­мать­ся не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1

так как x² + 1 > 0 , то уравнение равносильно совокупности :

\left[ { {{x-a=x^{2}+1 } \atop {a-x=x^{2}+1 }} { {{x^{2}-x+1+a=0 } \atop {x^{2}+x+1-a=0 }} \right.

эта совокупность имеет решение, если:

\left \{ {{1-4(1+a)\geq0 } \atop {1-4(1-a)\geq0 }}  \{ {{1-4-4a\geq 0 } \atop {1-4+4a\geq 0 }}  \{ {{-4a\geq3 } \atop {4a\geq 3 }}  \{ {{a\leq -\frac{3}{4} } \atop {a\geq \frac{3}{4} }} \right. : (-\infty; -\frac{3}{4}]u[\frac{3}{4}; +\infty)

4,6(93 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ