По формуле Бернулли определяем вероятности для первого и второго событий:
Количество независимых испытаний n = 20; вероятности событий выпадения как орла так и решки равны q = p = 1/2.
Орел выпадает ровно 20 раз (k = 20)
Вероятность P1 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(20! * 2!) * (1/2)^20 * (1/2)^2 = 56/2 * (1/2)^8 = 7/64
Орел выпадает ровно 1 раз (k = 1)
Вероятность P2 = n!/(k!*(n - k)!) * (p^k * q^(n - k)) = 8!/(1! * 7!) * (1/2)^1 * (1/2)^7 = 8 * (1/2)^8 = 2/64
Вероятность наступления события P1 больше P2 в P1/P2 = (7/64) / (2/64) = 3.5 раза.
(sinx-sin3x)+sin2x=0
-2sinxcos2x+2sinxcosx=0
2sinx(cosx-cos2x)=0
2sinx*2sinx/2*sin3x/2=0
sinx=0⇒x=πn,n∈z
sinx/2=0⇒x/2=πk⇒x=2πk,k∈z
sin3x/2=0⇒3x/2=πm⇒x=2πm/3,m∈z
ответ x=πn,n∈z,x=2πm/3,m∈z
2
2sinxsin4x-sin4x=0
sin4x*(2sinx-1)=0
sin4x=0⇒4x=πn⇒x=πn/4,n∈z
sinx=1/2⇒x=(-1)^k*π/6+πk,k∈z
3
(cos12x-cos8x)+(cos10x-cos6x)=0
-2sin10xsin2x-2sin8xsin2x=0
-2sin2x(sin10x+sin8x)=0
-2sin2x*2sin9xcosx=0
sin2x=0⇒2x=πn⇒x=πn/2,n∈z
sin9x=0⇒9x=πk⇒x=πk/9,k∈z
cosx=0⇒x=π/2+πt,t∈z
4
(sin2x+sin6x)+5sin4x=0
2sin4xcos2x+5sin4x=0
sin4x(2cos2x+5)=0
sin4x=0⇒4x=πn⇒x=πn/4,n∈z
cos2x=-2,5<-1 нет решения