Пусть х - цифра десятков;
у - цифра единиц .
По условию цифра десятков, увеличенная на 2, в 2 раза больше цифры единиц.
Исходя из этого, получаем первое уравнение:
х +2 = 2у
Ещё в условии сказано, что если цифры десятков и единиц поменять местами, то полученное число будет меньше первоначального на 27, т.е.
(10х+у) > (10у+х) на 27
Получаем второе уравнение:
(10х+у ) - (10у+х) = 27
Упростим это уравнение:
9х - 9у = 27
х - у = 3
Решаем систему:
{x + 2 = 2y
{x - y = 3
Из второго уравнения выразим х:
х = у + 3
Подставим в первое:
у + 3 + 2 = 2у
у = 5 - цифра единиц
х = 5 + 3
х = 8 - цифра десятков;
ответ: 85
ответ:Извиняюсь что не в том порядке
Объяснение:
б) Используя cos (t)² = 1-sin (t)² запишем выражение в развёрнутом виде
1-sin (a)²/sin (a)+1
Использу а²-b²=(a-b)(a+b) разложим на множители выражение
(1-sin (a))*(1+sin(a))/sin(a)+1
Дальше мы можем сократить дробь на sin(a)+1
отсюда 1-sin(a)
a) Упростим выражение Sin^2 a/(1 + cos a).
Известно, что sin^2 a + cos^2 a = 1, тогда sin^2 a = 1 - cos^2 a. Подставим вместо sin^2 a выражение 1 - cos^2 a, тогда:
Sin^2 a/(1 + cos a) = (1 - cos^2 a)/(1 + cos a);
разложим числитель дроби на множители, используя формулу сокращенного умножения разности квадратов и получим:
(1^2 - cos^2 a)/(1 + cos a) = (1 - cos a) * (1 + cos a)/(1 + cos a);
Числитель и знаменатель дроби сокращаем на (1 + cos a) и тогда останется:
(1 - cos a) * 1/1 = 1 - cos a;
Значит, sin^2 a/(1 + cos a) = 1 - cos a.