Как решаются такие уравнения.
Правило звучит таким образом.
В первую очередь нужно перенести в одну сторону от знака равенства все слагаемые, содержащие переменную, а все числовые слагаемые перенести в другую сторону от знака равенства.
Например, во втором 2) примере:
переносим 2х влево, а 4 вправо. При переносе через знак равно меняется знак слагаемого на противоположный.
То есть получаем:
9х + 2х = 48 - 4.
Вычисляем правую и левую части:
11х=44.
После этого находим х, делим правую и левую части уравнения на множитель при х, то есть на 11.
11х / 11 = 44 / 11
х = 4. Это ответ.
в 5) делаем аналогично:
переносим слагаемые с х в одну сторону, числа в другую:
в данном случае перенесем 1.3х вправо, чтобы знак у слагаемого с х был плюс:
6.8 + 2.7 = 0.6х + 1.3х
9.5 = 1.9х
Чтобы дальше решалось проще, умножим правую и левую части на 10 (удобно так избавляться от дробей)
9.5*10=1.9х*10
95 = 19х
Теперь делим правую и левую части на 19:
95/ 19 = 19х / 9
5 = х
х = 5
Развернуть уравнение можно в любой момент в процессе решения.
ответ: х = 5.
6) решается аналогично:
переносим слагаемые с переменным влево, числовые слагаемые вправо:
4/9 * х - 1/6 * х = 9 - 14 = -5, сразу вычисляем правую часть
Для упрощения вычисления умножим правую и левую часть уравнения на 18 - наименьшее число такое, умножение на которое позволит избавиться от дробей в левой части:
4/9 * х * 18 - 1/6 * х * 18 = -5 * 18
4*18/9 * х - 1*18/6 * х = -80
18 делим на 9, получаем 2; 18 делим на 6, получаем 3.
4*2*х - 1*3*х = -80
8х - 3х = -80
5х = -80
Делим правую и левую части на 5:
5х/5 = -80/5
х = -18
ответ: х = -18
(x³ + 1)/(x + 1) + 3/(x² - x + 1) ≤ 4
одз x≠-1
да и сократим первyю дробь
(x² - x + 1) + 3/(x² - x + 1) ≤ 4
(x² - x + 1) всегда положителен D<0 и коэффициент при х^2 больше 0
приводим к общему знаменателю и отбрасываем его(он всегда положителен)
(x² - x + 1)² - 4(x² - x + 1) + 3 ≤ 0
D = 16 - 12 = 4
(x² - x + 1)₁₂ = (4 +- 2)/2 = 1 3
(x² - x + 1 - 1)(x² - x + 1 - 3) ≤ 0
(x² - x)(x² - x - 2) ≤ 0
вторая скобка D=1+8 = 9 x12=(1+-3)/2 = 2 -1 x² - x - 2 = (x - 2)(x + 1)
x(x-1)(x-2)(x+1) ≤ 0
применяем метод интервалов
[-1] [0] [1] [2]
x ∈ [-1,0] U [1,2]
вспоминаем одз х≠-1
ответ x ∈ (-1,0] U [1,2]
Решение прикреплено. Надеемся, что всё понятно написали. Решения заданий 2-3 из первой части добавлены.