М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
baxitclash
baxitclash
26.09.2021 19:24 •  Алгебра

Задание No 1. Найдите значение следующих выражений и проверьте с калькулятора,
используя формулу суммы/разности квадратов и
Квадрата разности:
2) 332;
1) 792:
472+2-47-53+53?
3)
4)
15,2 14,8​

👇
Открыть все ответы
Ответ:
Алина050913
Алина050913
26.09.2021
1) Область определения:
D(y)=(-∞;+∞);
2) Находим производную функции
y`=(-x³-3x²+4)`=(-x³)`+(-3x²)`+(4)`=-3x²-6x;
3) Находим точки возможных экстремумов, т.е точки, в которых производная равна 0.
у`=0
-3x²-6x=0;
-3x(x+2)=0;
x=0  или   х= - 2
4) Применяем достаточное условие экстремума, находим знаки производной слева и справа от этих точек:
____-___(-2)___+___(0)___-___
х=-2 - точка минимума, так как при переходе через точку производная меняет знак с - на +.
х=0- точка максимума, так как при переходе через точку производная меняет знак с + на -.
у(-2)=-(-2)³-3·(-2)²+4=-(-8)-3·4+4=8-12+4=0
у(0)=0³-3·0²+4=4
(-2;0)- точка локального минимума
(0;4)- точка локального максимума

4) Нули функции:
точки пересечения с осью ох.
у=0
-х³-3х²+4=0;
-х³+1-3х²+3=0;
-(х³-1)-3(х²-1)=0
(х-1)(-х²-х-1-3)=0
х-1=0     или  -х²-х-4=0
x=1                 х²+х+4=0
                       D=1-16<0  уравнение не имеет корней
(1;0)- точка пересечения с осью ох.
5) Точка пересечения с осью оу (0;4)
6) Дополнительные точки
х=2       у=-2²-3·2²+4=-16
х=-1      у=-(-1)³-3·(-1)²+4=2
х=-3      у=-(-3)³-3·(-3)²+4=27-27+4=4
См. рисунок в приложении.

Исследовать функцию у=-х^3-3х^2+4 и построить график
4,6(51 оценок)
Ответ:
yatsunvalya
yatsunvalya
26.09.2021

Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид
у = f'(x0)(x - x0) + f(x0).
Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1
f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x.
Здесь ^ - знак возведения в степень, * - знак умножения.
Найдем значение производной f'(x) в точке х = х0 = 1
f'(x0) = f'(1) = 3*1^2 - 20*1 = -17.
Найдем значение функции f(x) в точке х = х0 = 1
f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8.
Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1)
y = -17(x - 1) - 8, y = -17x + 9.
ответ: у = -17х + 9.

4,6(2 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ