Сумму (1/100)+(2/100)+...+(N/100) можно представить в виде выражения 0,5N(N+1/100); тогда получается уравнение: 0,5N(N+1/100) = 100N; N(N+1) = 2*100*100N; N^2+N = 20000N; N^2+N-20000N = 0; N^2-19999N = 0; N(N-19999) = 0; N = 0 v N-19999 = 0; N = 0 v N = 19999; но по условию N - натуральное число, поэтому N не равно 0; N = 19999.
ответ: 19999.
Исследуйте на четность функцию :
1) y = f(x) = - 8x + x² + x³
2) y = f(x) = √(x³ + x²) - 31*| x³ |
ни четные ,ни нечетные
Объяснение:
1)
f(x) = - 8x + x² + x³ ; Область Определения Функции: D(f) = R
функция ни чётная ,ни нечётная
проверяем:
Функция является четной, когда f(x)=f(-x) , нечетной, когда f(-x)=-f(x)
а) f(-x) = - 8*(-x) +(- x)² +(- x)³ = 8x + x² - x³ ≠ f(-x)
Как видим, f(x)≠f(-x), значит функция не является четной.
б)
f(-x) ≠ - f(-x) → функция не является нечетной
- - - - - -
2)
y = f(x) = √(x³ + x²) - 31*| x³ | ,
D(f) : x³ + x² ≥ 0 ⇔ x²(x+1) ≥ 0 ⇒ x ≥ -1 * * * x ∈ [ -1 ; ∞) * * *
ООФ не симметрично относительно начало координат
* * * не определен , если x ∈ ( -∞ ; - 1) * * *
функция ни чётная ,ни нечётная
Итак, если определять натуральные числа начиная с нуля (Что есть распространенная практика, то у нас два ответа). Если следовать тому о них понятии, что натуральный ряд начинается с единицы, то ответ N = 19999