В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 21, а разность их квадратов 105. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 21
х² - у² = 105
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 21 + у
(21 + у)² - у² = 105
441 + 42у + у² - у² = 105
42у = 105 - 441
42у = -336
у = -336/42
у = -8 - второе число.
х = 21 + у
х = 21 + (-8)
х = 13 - первое число.
Проверка:
13 - (-8) = 13 + 8 = 21, верно.
13² - (-8)² = 169 - 64 = 105, верно.
Припустимо, що а, в – розміри ділянки.
Формули для периметра та площі прямокутника: Р = 2(a + в), S = а ∙ в. З іншої сторони Р = 40 м
2(а + в) = 40, а + в = 20
Нехай а = х, тоді в = 20 – х.
За змістом задачі число х задовольняє нерівність
0 < х < 20, тобто належить інтервалу (0; 20) .
Складаємо функцію:
S(x) = x(20 – x)
Функція S(x) неперервна на всій числовій прямій, тому будемо шукати її
найбільше і найменше значення на відрізку [0;20] .
Знаходимо критичні точки:
S '(x) = 20 – 2x; 20 – 2x = 0, x = 10
10 Є [0;20]
S(10) = 100; S(0) = 0; S(20) = 0
Найбільшого значення на відрізку [0;20] функція S набуває, якщо х = 10. Якщо
вона досягає найбільшого значення всередині відрізка [0;20], то вона набуває найбільшого значення і всередині інтервала (0, 20). Значить а = 10, тоді в = 20 – 10 = 10.
Отже, прямокутна ділянка буде мати найбільшу площу, якщо її розміри 10х10.
Відповідь: а = 10, в = 10