Решите пример по алгебре С решением и ответом Вычислите: √(х²+2√(х²-1))-√(х²-2√(х²-1)), при х=√7+√3 (Большие Выражения, между которыми минус, там каждый из них полностью под корнем и в нем ещё один корень)
1) Задумал х, умножил на 2, получил 2х, вычел 15, получил 2x - 15, разделил результат на 10 и получил 0. (2x - 15)/10 = 0 2x - 15 = 0 2x = 15 x = 15/2 = 7,5
2) Задумал х, прибавил 7, получил x + 7, умножил это на 3, получил 3(x + 7), Вычел 15 и получил 30. 3(x + 7) - 15 = 30 3(x + 7) = 30 + 15 = 45 x = 45/3 - 7 = 15 - 7 = 8
3) В 1 день км, во 2 день x + 10 км, а всего 48 км. x + x + 10 = 48 2x = 48 - 10 = 38 x = 38/2 = 19; x + 10 = 29
4) Положили x яблок и 5x слив, а всего 18 фруктов. x + 5x = 18 6x = 18 x = 3 - яблок; 5x = 15 - слив
5) В банке x л воды, в ведре 3x л. x + 3x = 24 4x = 24 x = 6 л - в банке; 3x = 18 л - в ведре.
6) Андрею x лет, а Олегу в 3 раза больше или на 8 лет больше 3x = x + 8 2x = 8 x = 4 - Андрею, 3x = 12 - Олегу.
7) Из банки отлили 1/2 молока, потом половину остатка, то есть 1/4. А потом еще половину остатка, то есть 1/8. Всего отлили 1/2 + 1/4 + 1/8 = 4/8 + 2/8 + 1/8 = 7/8 банки. Осталось 1/8 банки и это 100 г. Значит, в банке было 100*8 = 800 г.
8) Скорость автобуса х км/ч, а автомобиля х+12 км/ч. Некое расстояние автобус проехал за 4 часа, а машина за 3 часа. 4x = 3(x + 12) 4x = 3x + 36 x = 36 км/ч - скорость автобуса. x + 12 = 36 + 12 = 48 км/ч - скорость автомобиля. За 4 часа он проехал 36*4 = 144 км.
9) За 1 час ученик отошел от школы на 3 км, и в это время выехал вел. За время t ученик успеет пройти 3t км, а вел проедет 16t км. И это на 3 км больше, чем пройдет ученик. S = 3t + 3 = 16t 13t = 3 t = 3/13 часа = 180/13 мин ~ 13,85 мин. Расстояние от школы, которое успеет проехать велосипедист S = 16t = 16*3/13 = 48/13 км ~ 3,7 км.
3/(2^(2 - x²) -1)² - 4/(2^(2- x²) -1) + 1 ≥ 0 ;
замена : t = 2^(2-x²) -1
3 / t² - 4 / t +1 ≥ 0 ;
(t² - 4t +3) / t² ≥ 0
для квадратного трехчлена t² - 4t +3 t₁=1 корень: 1² - 4*1+3 = 1- 4+3 =0.
t₂ =3/t₁=3/1=1 (или t₂ =4 -1=3)
* * * наконец можно и решить уравнение t² - 4t +3=0 * * *
(t² - 4t +3) / t² ≥ 0 ⇔ (t -1)(t - 3) / t² ≥ 0 .
+ + - +
(0) [1] [ 3]
* * * совокупность неравенств [ { t ≤ 1 ; t ≠0 . { t ≥ 3 * * *
a)
{ 2^(2-x²) -1 ≤ 1 ; 2^(2-x²) -1 ≠ 0 .⇔ { 2^(2-x²) ≤ 2 ; 2^(2-x²) ≠ 1 . ⇔
{ 2^(2-x²) ≤ 2¹ ; 2^(2-x²) ≠ 2⁰.⇔ {2-x² ≤ 1 ; 2 - x² ≠ 0.⇔{ x² -1 ≥ 0 ; x² ≠ 2⇔
{ (x+1)(x-1) ≥ 0 ; x ≠ ±√2 . ⇒ x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ [1 ; √2) U (√2 ; ∞) .
b)
2^(2-x²) -1 ≥ 3 ⇔ 2^(2-x²) ≥ 4 ⇔2^(2-x²) ≥ 2² ⇔2- x² ≥ 2 ⇔ x² ≤ 0 ⇒ x=0.
ответ: x∈ ( -∞ ; -√2 ) ∪ (-√2 ; -1] ∪ { 0} ∪ [1 ; √2) U (√2 ; ∞) .