Очевидно, что равных чисел не должно быть (иначе их разность - 0, делится на 7). Упорядочим числа в таком порядке: a1<a2<...<a8
Рассмотрим разности a8-a1, a8-a2, a8-a3, ... a8-a7 (всего 7 разностей). Так как разностей таких 7, то 2 из них дают одинаковый остаток при делении на 7. Пусть например это разности
a8-a1=7k+m
и a8-a2=7l+m
Тогда их разность: a8-a1-a8+a2=a2-a1=7(k-l) делится на 7, что и требовалось доказать
X^2(-x^2 -49)<=49(-x^2 -49) -умножаем левую и правую часть на -1: x^2(x^2 +49)>=49(x^2 +49) предположим x:2=a, тогда: a(a+49)-49(a+49)>=0 a^2-49^2>=0 (a-49)(a+49)>=0 т.к. a=x^2 всегда >=0, то x^2 +49 всегда >0 и решение неравенства сводится к решению x^2 -49>=0 (x-7)(x+7)>=0 система 1: x-7>=0 x+7>=0 x>=7 x>=-7 решением является пересечение, т.е. x>=7
система 2: x-7<=0 x+7<=0 x<=7 x<=-7 решение x<=-7 решением исходного неравенства будет объединение решений двух систем, т.е. -7>=x>=7 - объединение числовых промежутков от минус бесконечности до -7 и от 7 до плюс бесконечности
Очевидно, что равных чисел не должно быть (иначе их разность - 0, делится на 7). Упорядочим числа в таком порядке: a1<a2<...<a8
Рассмотрим разности a8-a1, a8-a2, a8-a3, ... a8-a7 (всего 7 разностей). Так как разностей таких 7, то 2 из них дают одинаковый остаток при делении на 7. Пусть например это разности
a8-a1=7k+m
и a8-a2=7l+m
Тогда их разность: a8-a1-a8+a2=a2-a1=7(k-l) делится на 7, что и требовалось доказать