М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LeveL14
LeveL14
05.05.2020 05:29 •  Алгебра

Стиральный порошок стоит 48 руб 50 коп.какое наибольшее число пачек порошка можно купить на 350 руб во время распродажи,когда скидка составляла 24 %?

👇
Ответ:
яна2754
яна2754
05.05.2020

350 р -100%

хр     - 24%

х = 350*24/100=84 (скидка)

350-84=266(цена порошка со скидкой)

266/48.5=5.4845...

Наибольшее число пачек = 5

Все ;)

4,5(73 оценок)
Открыть все ответы
Ответ:
edelbi9512
edelbi9512
05.05.2020

Участник Знаний

1.~ a)~ (x+4)^2=x^2+8x+16\\ b)~ (y-5x)^2=y^2-10xy+25y^2\\ c)~ (3a-2)(3a+2)=(3a)^2-2^2=9a^2-4\\ d)~ (c-2b)(c+2b)=c^2-(2b)^2=c^2-4b^2

2. Разложить на множители:

a)~ x^2-81=x^2-9^2=(x-9)(x+9)\\ b)~ y^2-4y+4=(y-2)^2

в пункте б) опечатка, так что предположил как должно быть

c)~ 36x^4y^2-169c^2=(6x^2y)^2-(13c)^2=(6x^2y-13c)(6x^2y+13c)\\ d)~ (x+1)^2-(x-1)^2=(x+1-x+1)(x+1+x-1)=2\cdot 2x=4x

3. Упростить выражение:

(c+6)^2-c(c+12)=c^2+12c+36-c^2-12c=36

4. Решите уравнение:

a)~ (x+7)^2-(x-4)(x+4)=65\\ x^2+14x+49-x^2+16=65\\ 14x=0\\ x=0

b)~ 49y^2-64=0\\ y^2=\dfrac{64}{49}~~\Rightarrow~~~ y_{1,2}=\pm\dfrac{8}{7}

5. Выполнить действия:

a)~ (4a^2+b^2)(2a-b)(2a+b)=(4a^2+b^2)(4a^2-b^2)=16a^4-b^4\\ b)~ (b^2c^3-2a^2)(b^2c^3+2a^2)=(b^2c^3)^2-(2a^2)^2=b^4c^6-4a^4

6*.Докажите неравенство:

4x^2+9y^2>12xy-0.1\\ 4x^2-12xy+9y^2>-0.1\\ (2x-3y)^2>-0.1

Что и требовалось доказать

Объяснение:

4,6(72 оценок)
Ответ:
lolkekpfff
lolkekpfff
05.05.2020
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. глава 5. решение треугольников 5.1. прямоугольный треугольник  аксиомы 1.4 и 2.1 позволяли приписывать отрезкам и углам числа, равные их мерам, то есть измерять отрезки и углы. до сих пор не было связи между величинами углов и длинами отрезков. с введением треугольников появляется возможность связать величины градусных мер углов треугольника и длин его сторон. рассмотрим соотношения между сторонами и углами прямоугольного треугольника. 1  рисунок 5.1.1.  прямоугольный треугольник. косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе. пусть угол (bac) – искомый острый угол. так, например, для угла bac (рис. 5.1.1) теорема 5.1.  косинус угла зависит только от градусной меры угла и не зависит от расположения и размеров треугольника. доказательство  пусть abc и a1b1c1 – два прямоугольных треугольника с одним и тем же углом при вершинах a и a1, равным α . построим треугольник ab2c2, равный треугольнику a1b1c1, как показано на рис. 5.1.2. это возможно по аксиоме 4.1. так как углы a и a1 равны, то b2 лежит на прямой ab. прямые bc и b2c2 перпендикулярны прямой ac, и по следствию 3.1 они параллельны. по теореме 4.13 2  рисунок 5.1.2.  к теореме 5.1. но по построению ac2 = a1c1; ab2 = a1b1, следовательно, что и требовалось доказать. теорема 5.2.  теорема пифагора. в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. модель 5.2. доказательство теоремы пифагора. на рисунке 5.1.3 изображен прямоугольный треугольник. bc и ac – его катеты, ab – гипотенуза. по теореме bc2 + ac2 = ab2. доказательство  пусть abc – данный прямоугольный треугольник с прямым углом при вершине c. 3  рисунок 5.1.3.  к доказательству теоремы пифагора. проведем высоту cd из вершины c. по определению из треугольника acd и из треугольника abc. по теореме 5.1 и, следовательно, . аналогично из δ cdb, из δ acb, и отсюда ab · bd = bc2. складывая полученные равенства и, замечая, что ad + bd = ab, получаем ac2 + bc2 = ab · ad + ab · bd = ab (ad + bd) = ab2. теорема доказана. в прямоугольном треугольнике любой из катетов меньше гипотенузы. косинус любого острого угла меньше единицы. пусть [bc] – перпендикуляр, опущенный из точки b на прямую a, и a – любая точка этой прямой, отличная от c. отрезок ab называется наклонной, проведенной из точки b к прямой a. точка c называется основанием наклонной. отрезок ac называется проекцией наклонной. с теоремы пифагора можно показать, что если к прямой из одной точки проведены перпендикуляр и наклонные, то любая наклонная больше перпендикуляра, равные наклонные имеют равные проекции, из двух наклонных больше та, у которой проекция больше. синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе. по определению тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему. для угла (bac) прямоугольного треугольника, изображенного на рис. 5.1.1, имеем так же как и косинус, синус угла и тангенс угла зависят только от величины угла. 4  рисунок 5.1.4. из данных определений получаем следующие соотношения между углами и сторонами прямоугольного треугольника: если α – острый угол прямоугольного треугольника, то катет, противолежащий углу α , равен произведению гипотенузы на sin α;  катет, прилежащий к углу α , равен произведению гипотенузы на cos α;  катет, противолежащий углу α , равен произведению второго катета на tg α.
4,5(96 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ