Дана функция у = (x³ -6x² + 32)/(4 - x). Если х не равен 4, то числитель можно разделить на знаменатель и получим квадратичную функцию у = - x² + 2x + 8. График её - парабола ветвями вниз. Заданное условие выполняется, когда прямая y = а является касательной к графику в вершине параболы. Хо = -в/2а = -2/(2*(-1)) = 1. Отсюда имеем один из ответов: а = у(х=1) = -1+2+8 = 9. Так как заданная функция не существует в точке х = 4, то прямая у = 0 пересекает график только в точке х = -2. Второй ответ: а = 0.
Площадь боковой поверхности прямоугольного параллелепипеда складывается из 4 площадей боковых прямоугольников и двух площадей одинаковых прямоугольников (верхнего и нижнего) Пусть х- длина параллелепипеда, тогда ширина параллелепипеда = х/3, а высота =2х Площадь бокового прямоугольника построенного по высоте и длине = х*2х Площадь бокового прямоугольника построенного по ширине и высоте = х/3*2х Площадь верхнего=площади нижнего треугольника=произведению ширины на длину=х/3*х
Площадь полной поверхности равна =2*х*2х+2*х/3*2х+2*х/3*х=864|*3 12x^2+4x^2 +2x^2=2592 18x^2=2592 x^2=144 x=12
Я еле-еле понял, что слева (8x-9)/5, а не 8x - 9/5
(8x - 9)/5 >= x^2/3.
Я степень обозначаю ^. x^2 - это х в квадрате.
Умножаем все на 15
24x - 27 >= 5x^2
5x^2 - 24x + 27 <= 0
D/4 = 12^2 - 5*27 = 144 - 135 = 9
x1 = (12 - 3)/5 = 9/5 = 1,8
x2 = (12 + 3)/5 = 3
(x - 1,8)(x - 3) <= 0
x = [1,8; 3]