Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной; если же налагаются и другие дополнительные условия, то вероятность события называют условной. Например, часто вычисляют вероятность события B при дополнительном условии, что произошло событие А.
Условной вероятностью PA(B)=P(B|A) (два обозначения) называют вероятность события В, вычисленную в предположении, что событие А уже наступило.
Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.
P(AB)=P(B)⋅P(A|B)=P(A)⋅P(B|A).
В частности, отсюда получаем формулы для условной вероятности:
А) если f(x) четная , то при х>0 мы зеркально отразим нашу функцию
относительно ординат
так как для чётных функций f(x)=f(-x)
б) если f(x) нечётная, то при х>0 мы сначала зеркально отразим нашу функцию относительно оси ординат , а затем полученный график снова зеркально отразим, но уже относительно оси абсцисс так как для нечётных функций f(x)= -f(-x)
в) если функция общего вида, то как она будет вести при х>0 нельзя сказать определенно, надо проводить дополнительные исследования функции при х>0
Случайное событие определено как событие, которое при осуществлении совокупности условий эксперимента может произойти или не произойти. Если при вычислении вероятности события никаких других ограничений, кроме условий эксперимента, не налагается, то такую вероятность называют безусловной; если же налагаются и другие дополнительные условия, то вероятность события называют условной. Например, часто вычисляют вероятность события B при дополнительном условии, что произошло событие А.
Условной вероятностью PA(B)=P(B|A) (два обозначения) называют вероятность события В, вычисленную в предположении, что событие А уже наступило.
Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность второго, вычисленную при условии, что первое событие произошло, т.е.
P(AB)=P(B)⋅P(A|B)=P(A)⋅P(B|A).
В частности, отсюда получаем формулы для условной вероятности:
P(A|B)=P(AB)P(B),P(B|A)=P(AB)P(A).