В решении.
Объяснение:
Дана функция у = -1/2 х² + 3х; найти промежуток её убывания.
Построить график функции.
Сначала преобразовать уравнение функции для упрощения.
-1/2 х² + 3х = -0,5х² + 3х, неполное квадратное уравнение.
Приравнять к нулю:
-0,5х² + 3х = 0
0,5х (-х + 6) = 0
0,5х = 0;
х₁ = 0;
-х + 6 = 0
-х = -6
х = 6;
График - парабола, ветви направлены вниз, пересекают ось Ох в точках: х = 0; х = 6 (нули функции).
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -2 -1 0 1 2 4 6 8
у -8 -3,5 0 2,5 4 4 0 -8
По вычисленным точкам построить параболу.
Согласно графика, функция убывает в промежутке х∈(3; +∞).
Объяснение:
1а) x² + x - 20 ≠0
найдем x² + x - 20 = 0
D = 1+80 = 81
x ₁ ₂ = (-1 ±9) / 2
x₁ = -5
x₂ = 4
ОВФ (-∞; -5)∩ (-5;4)∩(4; +∞)
1б) получитсясистема:
{x+9 ≥0 {x≥-9
{4-x ≥0 {x ≤4
ОВФ [-9;4]
2a) f(-x) = -4x⁷ +2x³ = -f(x) нечетная
2б) f(-x) = (-x)² -3(-x)⁴= x² -3x⁴ = f(x) четная
2в) f(-x) = -x³ + (-x)⁶ = -x³ + x⁶ ≠ f(x) ≠ f(x) ни четная, ни нечетная
3) область определения X≥0
а) пересечение с x т. е. y =0 при х = 0 и x = 4 точки (0;0), (4;0)
б) возрастание [0;1]
убывание (1;+∞)
в) ОЗФ, [0.5; +∞)