1) (а-в)²=(в-а)² Чтобы доказать тождество, нужно с тождественных преобразований:
либо правую часть привести к виду левой части; либо левую часть привести к виду правой части ; либо и левую и правую привести к какому другому одинаковому виду
23.17 p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1 То есть при любых значениях х ответ будет всегда 1.
23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2 Разберем по частям 2*x^2*y^2+2 1) 2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен 2) число 2>0, положительное число 3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
а)sin2x \ (1 + ctgx) = 0;
По основному свойству дроби: числитель дроби равен, а знаменатель не равен нулю. Тогда получим систему из двух уравнений:
sin2x = 0 и (1 + ctgx) ≠ 0;
Решаем отдельно каждое из них:
1) 1 + ctgx ≠ 0;
ctgx ≠ -1;
x ≠ -arcctg(1) + ╥K, K є Z;
x ≠ -╥ / 4 + ╥K, K є Z;
2) sin2x = 0;
2x = ╥k, K є Z;
x = ╥k / 2, K є Z;
Так как полученные решения не совпадают с ограничениями уравнения, то можем записать ответ.
ответ: x = ╥k / 2, K є Z.
б)Раскроем скобки. Для этого будем использовать формулы приведения:
cosx+cosx-cosx=0.
В полученном выражении есть два слагаемых одинаковых, но разные по знаку, в сумме они дают 0, поэтому:
cosx=0.
Это уравнение представляет собой частный случай:
x=п/2+пn, n принадлежит Z.
ответ: п/2+пn, n принадлежит Z.