1. -2;
2. 3.
Объяснение:
1.Sn=6n-n^2
a1 = S1 = 6•1 - 1^2 = 5;
a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;
a2 = S2 - S1 = 8 - 5 = 3.
Найдём d:
d = a2 - a3 = 3 - 5 = -2.
2. Sn=6n-n^2
Рассмотрим квадратичную функцию
у = 6х - х^2.
Графиком функции является парабола
у = - х^2 + 6х
Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:
х вершины = -b/(2a) = -6/(-2) = 3.
y вершины = - 3^2 +6•3 = -9+18 = 9.
Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.
Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.
Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.
ответить на второй вопрос можно и по-прежнему другому:
Sn=6n-n^2
- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.
Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.
В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.
2*3^n≤2^n+4^n
преобразуем
2 ≤ (2^n+4^n ) / 3^n = (2/3)^n +(4/ 3)^n
в правой части оба слагаемые положительные числа
первое слагаемое (2/3)^n - дробь -всегда меньше 1
второе слагаемое (4/3)^n - дробь -всегда больше 1
достаточное условие доказательства , чтобы одно из слагаемых было БОЛЬШЕ 2
рассмотрим n=1,2,3
n=1
(2/3)^1 +(4/ 3)^1 = 2/3+4/3=6/3 =2 <выполняется равенство 4/3 < 2
n=2
(2/3)^2 +(4/ 3)^2 = 4/9+16/9=20/9 =2+2/9 >2 <выполняется НЕравенство 16/9 < 2
n=3
(2/3)^3 +(4/ 3)^3 = 8/27+64/27=72/27 =2+18/27 <выполняется НЕравенство 64/27 > 2
второе слагаемое (4/3)^n > 2 , для всех 3 ≤ n
следовательно, для любого натурального n справедливо заданное неравенство
ДОКАЗАНО
наименьшее значение функции y=x2 на отрезке [-2;1] равно нулю, наибольшее значение функции y=-x2 на отрезке [-1;2] равно 4
у наимен. < у наибол