1) x^2 >= 196
x <= -14 U x >= 14
2) x(x+5)(2-6x)(2x-4) <= 0
Разделим неравенство на (-4). При этом знак неравенства поменяется.
x(x+5)(3x-1)(x-2) >= 0
По методу интервалов, особые точки: -5, 0, 1/3, 2.
x ∈ (-oo; -5] U [0; 1/3] U [2; +oo)
3) Это НЕ неравенство
4) x^2*(2+3) > 0
5x^2 > 0
Это неравенство истинно при любом x, кроме 0.
x ∈ (-oo; 0) U (0; +oo)
5) (x+2)/(x-4)^2 >= 0
x ≠ 4
(x - 4)^2 > 0 при любом x, не равном 4, поэтому можно на нее умножить.
x + 2 >= 0
x ∈ [-2; 4) U (4; +oo)
пусть х скорость велосипедиста. тогда х+28 скорость мотоциклиста
32-x/2 - расстояние между мотоциклистом и велосипедистом
2х+28 - скорость сближения
(32-x/2)/(2x+28)=1/2
64-x=2x+28
3x=36
x=12
12+28=40
ответ 12 км/ч -скорость велосипедиста
40 км/ч - скорость мотоцикла