1)18 (машин на второй стоянке)
36 (машин на первой стоянке)
29 (машин на третьей стоянке)
2)10 (бочек на втором стеллаже)
27 (бочек на третьем стеллаже)
81 (бочка на первом стеллаже)
Объяснение:
1. На трёх стоянках 83 автомобиля, на первой в два раза больше, чем на второй, а на третьей на 7 машин меньше , чем на первой. Сколько машин на каждой стоянке?
1)х - машин на второй стоянке
2х - машин на первой стоянке
2х-7 - машин на третьей стоянке.
По условию задачи всего 83 машины, уравнение:
х+2х+2х-7=83
5х=83+7
5х=90
х=90/5
х=18 (машин на второй стоянке)
18*2=36 (машин на первой стоянке)
36-7=29 (машин на третьей стоянке)
Проверка:
18+36+29=83 (маш.)
2) На трёх стеллажах 118 бочек, причём на третьем в три раза меньше , чем на первом и на 17 больше чем втором. Сколько бочек на каждом стеллаже?
х - бочек на втором стеллаже
х+17 - бочек на третьем стеллаже
3(х+17) - бочек на первом стеллаже
По условию задачи всего 118 бочек, уравнение:
х+х+17+3(х+17)=118
2х+17+3х+51=118
5х=118-68
5х=50
х=10 (бочек на втором стеллаже)
10+17=27 (бочек на третьем стеллаже)
27*3=81 (бочек на первом стеллаже)
Проверка:
10+27+81=118.
Нет, к сожалению, решается это задание, например, с метода интервалов. Вы сделали двойную работу, раскрыли скобки, а потом нашли корни левой части. Это можно было сделать, не прибегая к решению квадратного уравнения, а просто приравнять к нулю сначала одну, потом другую скобки, итак, корни найдены. Это -3 и 9. Разбиваем ими числовую ось на интервалы (-∞;-3);(-3;9);(9;+∞), и устанавливаем знак на каждом промежутке, для чего можете просто подставить число из данного интервала и узнать знак левой части неравенства. Например, на промежутке (-∞;-3) берем -4
Подставляем в левую часть неравенства, получаем (-4+3)(-4-9)
и видим, что знак там в первой скобке минус и во второй минус, а минус на минус даст плюс, аналогично во втором интервале получим минус, и в третьем плюс. Нас интересуют плюсы. Поэтому ответом будет объединение промежутков (-∞;-3)∪(9;+∞)
Верно! ответ: 1)
- Верное
- Неверное
ответ: 2)
ответ: 4)