Решение прикреплено. Надеюсь, что всё понятно.
Область определения функции. ОДЗ: Точки, в которых функция точно неопределена:x=2.00, x=-2.00.
Так как функция имеет 2 разрыва, то её область определения имеет 3 промежутка. От -00 до +00 на всех участках функция убывает.
На промежутках убывания производная функции отрицательна.
−(2x²+8)/(x2−4)²
Отметим на числовой прямой две точки разрыва, критическую точку и определим знаки второй производной на полученных интервалах:
_ + _ +
-2 0 2
График функции y=4x/(x2-4)3 является вогнутым на (-2;0) U (2;∞) и выпуклым на (-∞;-2) U (0;2). В начале координат существует перегиб графика.
При переходе через точки x=-2 и x=2 вторая производная тоже меняет знак, но они не считаются точками перегиба, так как функция терпит в них бесконечные разрывы.
решений уравнение не имеет
Объяснение:
так как значения Х в четных степенях больше нуля, то левое выражение больше либо равно 1. Правое выражение равно 0<1.
решений уравнение не имеет