2) a=1 b=-5 c=6 d=b2-4ac d=25-4*6=25-24=1 больше 0, 2 корня
x1= -b+корень из d, делённый на 2a x2= -b-корень из d, делённый на 2а
x1=5+1:2=3 х2= 5-1:2=2 ответ:2 и 3
3)а=1 b= -2 c= -15 d=b2-4ac d= 4-4*(-15)=4+60=64 больше 0, 2 корня x1=-b+корень из d , делённый на 2а x2=-b-корень из d:делённый на 2а
x1=2+8:2=5 х2=2-8:2= -3 ответ: -3 и 5
4)a=1 b=6 c= -40 d=b2-4ac d= 36-4*(-40)= 36+160=196 больше 0, два корня
x1=-b+корень из d , делённый на 2а x2=-b-корень из d:делённый на 2а x1=-6+14=8 х2= -6-14= -20 ответ:-20 и 8 1) a=1 b=6 c=8 d=b2-4ac d=36-4*8=36-32=4 больше 0, два корня
x1=-b+корень из d , делённый на 2а x2=-b-корень из d:делённый на 2а x1= -6+2:2=-2 х2= -6-2:2=-4 ответ: -2 и -4
Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
d=b2-4ac
d=25-4*6=25-24=1 больше 0, 2 корня
x1= -b+корень из d, делённый на 2a
x2= -b-корень из d, делённый на 2а
x1=5+1:2=3
х2= 5-1:2=2
ответ:2 и 3
3)а=1 b= -2 c= -15
d=b2-4ac
d= 4-4*(-15)=4+60=64 больше 0, 2 корня
x1=-b+корень из d , делённый на 2а
x2=-b-корень из d:делённый на 2а
x1=2+8:2=5
х2=2-8:2= -3
ответ: -3 и 5
4)a=1 b=6 c= -40
d=b2-4ac
d= 36-4*(-40)= 36+160=196 больше 0, два корня
x1=-b+корень из d , делённый на 2а
x2=-b-корень из d:делённый на 2а
x1=-6+14=8
х2= -6-14= -20
ответ:-20 и 8
1) a=1 b=6 c=8
d=b2-4ac
d=36-4*8=36-32=4 больше 0, два корня
x1=-b+корень из d , делённый на 2а
x2=-b-корень из d:делённый на 2а
x1= -6+2:2=-2
х2= -6-2:2=-4
ответ: -2 и -4