Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.
BH обозначим r - радиус окружности в основании конуса.
BA тогда будет 2r
Из прямоугольного треугольника ABH:
AH² = BA² - BH²
AH² = 4r² - r²
AH² = 3r²
AH = r√3
Объем конуса V = πr²h/3 (где r - радиус основания, а h - высота)
V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3
Но V так же равно 36.
πr³√3/3 = 36
r³ = 36√3/π
r = ∛(36√3/π)
Вычислим радиус вписанного шара - R
Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы.
Так как треугольник ABC равносторонний R = a√3/6 (а - сторона треугольника)
Сторона треугольника - 2r = 2∛(36√3/π)
R = ∛(36√3/π)*√3/6
Vшар = 4πR³/3
Vшар = 4π(∛(36√3/π)*√3/6)³/3 = (4π(36√3/π)*3√3/36*6)/3 = 4*36√3*3√3/36*6*3 = 4/2 = 2
ответ: 2
При одном включённом эскалаторе за минуту заполняется 1/12 зала. При двух включённых эскалаторах за минуту заполняется 1/30 зала. Далее можно рассуждать по-разному.
Первый . Разница 1/12 – 1/30 = 1/20 показывает, какую часть зала опустошает за минуту один эскалатор. Когда включат третий эскалатор, толпа начнёт убывать со скоростью 1/20 – 1/30 = 1/60 зала в минуту. Следовательно, зал освободится через час.
Второй . Скорость v2 заполнения зала при двух включенных эскалаторах равна среднему арифметическому скоростей v1 и v3 заполнения при одном и трёх включенных эскалаторах. Поэтому v3 = 2v2 – v1 = 2·1/30 – 1/12 = – 1/60, то есть освобождается 1/60 зала в минуту.
ответ
За час.