Пусть мы имеем неравенство с двумя переменными одного из следующих видов:y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:1. Строим график функции y = f(x), который разбивает плоскость на две области.2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией. ну вообще это основное, а там уже смотри по заданию как))
Распишем a₅ и а₁₀:
a₅=a₁+4·d;
a₁₀=a₁+9·d;
Составим систему уравнений:
a₁+4·d=14
a₁+9·d=29
Вычтем из одного другое:
-5d=-15
d=3
Тогда a₁=14-4·d=14-4·3=14-12=2
a₂₀=a₁+19·d=2+19·3=57+2=59
Значит S₂₀=(a₁+a₂₀)/2 * 20 = (2+59)/2 * 20=610
ответ: 610.