М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
rubcovayana
rubcovayana
09.02.2020 14:15 •  Алгебра

Определите, какие из данных функций являются квадратичными: а) у = 5х²+3-х
б) у = 6х³-5х²
в) у = 5х+2
г) у = (х -3x)²
2. Определите ветви, какой параболы направлены вверх:
а) y=3-2x-x²
б) y=2x²-x+5
в) y=-x²+x+8
г) y= x-x²+5
3. Найдите координаты вершины параболы y= -x²+x-1
а) (-0,5;-1,75)
б) (0,5;-1,75)
в) (-0,5;1,75)
г) (0,5;0,75)
4. Найдите значение коэффициента с функции у=х²-6х+с, если известно, что наименьшее значение функции равно 1
а) -10
б) 11
в) 10
г) -11
5. Найдите координаты точек пересечения графика функции у = - х²+8х+6 с осью ординат
а) (-6;6)
б) (1;-6)
в) (0;6)
г) (6;0)
6. Найдите координаты точек пересечения графика функции у = - х²+4х+5
с осью абсцисс
а) (5;0) и (0;1)
б) (5;0) и (-1;0)
в) (5;0) и (-1;0)
г) (0;5) и (-1;0)
7. Найдите нули функции у=х²-7х+10
а) 5 и -2
б) -2 и -5
в) 5 и 2
г) -5 и 2
8. Дана функция у = 2х²- х-15. Найдите у(-3)
а) 6
б) 0
в) -6

КЛАСС

👇
Открыть все ответы
Ответ:
tecakrus88
tecakrus88
09.02.2020
а) Пусть х -число фазанов, тогда кроликов (35-х)
У фазана две ноги, у кролика четыре
    2х+4·(35-х)=94
    2х+140 - 4х=94
    140-94=4х-2х
     46=2х
х=23
23 фазана;
35-23=12 кроликов

 б) Пусть х - число кроликов; 35-х число фазанов
2·(35-х)+4х=94
2х=24
х=12
35-12=23 фазана 
в)  Пусть х -число ног у фазанов, тогда 94-х - число ног у кроликов
(х/2)- фазанов 
(94-х)/4 - кроликов.

(х/2)+(94-х)/4=35
2х+94-х=140
х=46 ног у фазанов
46/2=23 фазана
35-23=12 кроликов

г) Пусть х -число ног у кроликов, 94-х число ног у фазанов
(х/4)+(94-х)/2=35
х+2·(94-х)=140
х=48 ног у кроликов
48/4=12 кроликов
35-12=23 фазана
4,4(6 оценок)
Ответ:
weelrockster
weelrockster
09.02.2020

Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами. А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

4,8(29 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ