КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью Найти нужно: yо.н. = уо.о. + уч.н.
Найдем уо.о. (общее однородное) Применим метод Эйлера Пусть , тогда подставив в однородное уравнение, получаем характеристическое уравнение Корни которого Тогда общее решение однородного уравнения будет
Найдем теперь уч.н.(частное неоднородное) отсюда где - многочлен степени х
Сравнивая с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде: уч.н. =
Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х
Тогда частное решение неоднородного будет иметь вид
Объяснение:
ответ: x=-1/6.