a4 = a1+3d = 7
a9 = a1+8d= -8
d= -3
a1 = 7-3*(-3) = 7+9 = 16
1.D(F)=[0;+∞)
1.Е(F)=[0;+∞)
3. Нули функции x-√x=0; √х*(√x-1)=0; x=0 ;x=1.
4. Промежутки знакопостоянства при х ∈(0;1) F(x)<0; при х ∈(1;+∞) F(x)>0
5. Функция непериодическая.
6. Функция не является ни четной, ни нечетной. т.к. область определения не симметрична относительно начала отсчета.
7. Асимтптоты. т.к. предел функции при х стремящемся к ±∞ равен ±∞, то горизонтальные асимптоты справа и слева отсутствуют. Вертикальных асимптот тоже нет. Функция в области определения непрерывна. Наклонные асимптоты ищем в виде у=кх+b, где к-предел отношения F(х)/x при х стремящемся к ∞, этот предел равен 1, а b = пределу (F(x)-kx) при х стремящемся к ∞, и он равен -∞. Поэтому наклонных асимптот нет.
8. Промежутки монотонности. Первая производная равна 1-1/(2√х)=(2√х-1)/(2√х), она равна нулю при х=1/4, и производная отрицательна при х∈(0;1/4) здесь функция убывает. и положительна при х∈(1/4;+∞) здесь функция возрастает.
9. Экстремумы. При переходе через точку х=1/4 производная меняет знак с минуса на плюс. х=1/4- точка минимума. Минимум равен 1/4-√1/4=-1/4
10. Вторая производная равна 1/(4х³/²) в области определения положительна, поэтому график вогнут. Точек перегиба нет.
График функции см. ниже.
ответ:Главный герой рассказа Юрия Яковлева «Разбуженный соловьями» — мальчик по фамилии Селюжёнок, который вместе с другими ребятами отдыхал в летнем лагере. От других ребят его отличало стремление брать себе все, что попадет под руку и редкое умение выводить людей из себя.
Селюжёнка нельзя было назвать вором, он никогда не пользовался теми вещами, которые брал у других людей, он их складывал в своей тумбочке, где они валялись без дела. Так продолжалось до тех пор, пока в художественной студии не пропал весь запас пластилина. Возмущенная руководительница кружка потребовала у начальника лагеря принять меры.
Объяснение:
d=-3; a1=а4-3d=7+9=16
Otvet:a1=16