М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
pactuwka2
pactuwka2
16.06.2022 20:42 •  Алгебра

Преобразуйте выражения: а) (n – 6)²; б) ( 3x +1)(3х - 1);
соч​

👇
Открыть все ответы
Ответ:
мик104
мик104
16.06.2022
Разобьём квадрат со стороной 5 см на 25 квадратов со стороной 1 см. Будем рассматривать их как контейнеры. Точка попадает в контейнер, если она лежит либо на его сторонах, либо во внутренней области. Тогда, по принципу Дирихле, хотя бы в одном из контейнеров окажется две точки. [Некоторые точки могут попасть сразу в четыре контейнера (если такая точка упадёт на вершину квадрата, которая не лежит на стороне исходного квадрата), но для нас важно, что любая точка с необходимостью попадает хотя бы в один.]
Итак, в одном из контейнеров содержится две точки. Вспомним, что наш контейнер не что иное, как квадрат со стороной в 1 см.
Покажем, что расстояние между двумя точками квадрата со стороной в 1 см не превышает √2. Рассмотрим квадрат ABCD (рис.1) со стороной равной 1 см и две произвольные точки, которые лежат на квадрате.

\displaystyle z_1 = (x_1, \ y_1), \ z_2 = (x_2, \ y_2)\\\\
d(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}\\\\
0 \leq x_1 \leq 1, \ 0 \leq x_2 \leq 1, \ 0 \leq y_1 \leq 1, \ 0 \leq y_2 \leq 1\\\\ - 1 \leq x_1 - x_2 \leq 1, \ - 1 \leq y_1 - y_2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 \leq 1, \ 0 \leq (y_1 - y_2)^2 \leq 1\\\\
0 \leq (x_1 - x_2)^2 + (y_1 - y_2)^2 \leq 1 + 1 = 2\\\\
0 \leq \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \leq \sqrt{2}

Что и требовалось доказать.
Решите в квадрате со стороной 5 см расположено 26 точек. докажите, что среди них существуют две точк
4,7(68 оценок)
Ответ:
Dashuleta200
Dashuleta200
16.06.2022
1) Замена (1/4)^x = y > 0 при любом х
4y^2 + 15y - 4 = 0
(y + 4)(4y - 1) = 0
y1 = -4 - не подходит
y = 1/4 = (1/4)^x
x = 1

2) 3^x = -x + 1 = 1 - x
3^x > 0 при любом х, поэтому 1 - x > 0; x < 1
При x = 0 будет 3^0 = 1 - 0 = 1 - подходит
При x ∈ (0; 1) будет 3^x > 1; а 1 - x < 1 - корней нет
При x < 0 будет 3^x < 1; 1 - x > 1 - корней нет
x = 0

3) 3^x*9*3^(1/5) - ? 
Здесь нет ни уравнения, ни неравенства

4) 2^(4x) >= 16
2^(4x) >= 2^4
4x >= 4
x >= 1

5) (1/4)^(2x-5) > 1/8
(1/2)^(4x-10) > (1/2)^3
Функция y = (1/2)^x - убывающая, потому что 1/2 < 1.
При переходе от степеней к показателям знак неравенства меняется.
4x - 10 < 3
x < 13/4

6) 5^(2x-3) - 2*5^(x-2) > 3
1/125*5^(2x) - 2/25*5^x - 3 > 0
Умножаем всё на 125
5^(2x) - 10*5^x - 375 > 0
Замена 5^x = y > 0 при любом x
y^2 - 10y - 375 > 0
(y - 25)(y + 15) > 0
y = -15 < 0 - нет корней
y = 25 = 5^x
x = 2
4,6(77 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ