Надо каждое квадратное уравнение разложить на скобки. x^2 - 4x + 4 = (x - 2)^2 x^2 - 8x - 9 = (x + 1)(x - 9) Подставляем (x - 2)^2 * (x + 1)(x - 9) < 0 Ясно, что квадрат не может быть отрицательным, поэтому на него можно разделить, но при этом помнить, что x =/= 2. Потому что при x = 2 левая часть будет = 0, а этого не должно быть. (x + 1)(x - 9) < 0 x = (-1; 9), но x =/= 2, поэтому ответ: x = (-1; 2) U (2; 9)
Если бы изначально было, например, (x^2 - 4x + 3)(x^2 - 8x - 9) < 0 (x - 1)(x - 3)(x + 1)(x - 9) < 0 Тогда было бы проще - по методу интервалов x = (-1; 1) U (3; 9)
50-29,75=20,25 (р)-общая сумма,на которую была снидена цена
предположим,что в первый раз сумма скидки составила х(руб), во второй у(руб),всего х+у=20,25
первый раз снизили товар на z%, во второй на 2z%
x=50*z/100=z/2 руб(сумма скидки в первой раз)
50-z/2руб-стоимость товара после первой уценки
у=(50-z)/2*2z/100=z*(100-z)/100 (сумма скидки во второй раз)
подставим найденные х и у в уравнение z/2+z*(100-z)/100=20,25
после приведения подобных получаем уравнение z²-150z+2025=0
находим корни квадратного уравнения и полуяаем z1=15 ;z2=135
отсюда следует что первый раз товар уценили на 15%, второй на 30%
первый раз на 7,5 руб , второй на 12,75 руб ,в сумме на это даёт 20,25 руб т.е после уценки на 20,25руб товар стал стоит 29,75руб