1. Раскрываем модуль. Если х-5>0, то (х-5)*(х+3) 2Раскрываем скобки х^2+3х-5х-15 Упрощаем, получается х^2-2х-15. Это все был первый случай, когда выражение под модулем больше нуля, теперь раскроем модуль так, если выражение под ним отрицательное 1. Раскрываем модуль. Если х-5<0, то (-х+5)*(х+3) 2. Раскрываем скобки. -х^2-3х+5х+15 Упрощаем, получается -х^2+2х+15. Все. Первое задание сделано. Аналогично решаются остальные задания. Просто нужно помнить правило раскрытия модуля. Если все-таки не понятно, или имеются затруднения - обращайтесь, постараюсь
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
решение смотри на фотографии