Решим заданную систему уравнений алгебраического сложения:
3х - 2у = 14,
2х + у = 7.
Умножим все члены второго уравнения на 2:
3х - 2у = 14,
4х + 2у = 14.
Прибавим к членам первого уравнения члены второго уравнения:
3х - 2у + 4х + 2у = 14 + 14,
7х = 28,
х = 28 : 7,
х = 4.
Из второго уравнения системы найдем значение у:
2х + у = 7,
у = 7 - 2х,
у = 7 - 2 * 4,
у = 7 - 8,
у = -1.
Значит, решением заданной системы уравнений являются х = 4 и у = -1.
Выполним проверку правильности решения:
3 * 4 - 2 * (-1) = 14,
2 * 4 + (-1) = 7;
12 + 2 = 14,
8 - 1 = 7;
14 = 14, верно,
7 = 7, верно.
Значит, система уравнений решена правильно.
ответ: х = 4, у = -1.
Объяснение:
Вот так
1)найти стационарные точки
f(x)=x^4-200x^2+56
f`(x) = 4x³ - 400x
4x³ - 400x = 0
4x*(x² - 100) = 0
4x = 0, x₁ = 0
x² - 100 = 0
x² = 100
x₂ = - 10
x₃ = 10
ответ: x₁ = 0 ; x₂ = - 10 ; x₃ = 10 - стационарные точки
2) определить интервалы возрастания функций
f(x)=x^3-x^2-x^5+23
1. Находим интервалы возрастания и убывания.
Первая производная.
f'(x) = -5x⁴ + 3x² - 2x
или
f'(x) = x * (-5x³ + 3x - 2)
Находим нули функции.
Для этого приравниваем производную к нулю
x * (-5x³ + 3x - 2) = 0
Откуда:
x₁ = - 1
x₂ = 0
(-1; 0) f'(x) > 0 функция возрастает
3) определить интервалы убывания функций
f(x)=x^3-7,5x^2+1
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x² - 15x
или
f'(x) = x*(3x - 15)
Находим нули функции. Для этого приравниваем производную к нулю
x*(3x - 15) = 0
Откуда:
x₁ = 0
x₂ = 5
(0; 5) f'(x) < 0 функция убывает
4) вычислить значение функции в точке максимума
f(x)=x^3-3^2-9x+1
Решение.
Находим первую производную функции:
y' = 3x² - 9
Приравниваем ее к нулю:
3x² - 9 = 0
x² = 3
x₁ = - √3
x₂ = √3
Вычисляем значения функции
f(- √3) = - 8 + 6√3 точка максимума
f(√3) = - 6√3 - 8
fmax = - 8 + 6√3
ответ: fmax = - 8 + 6√3