Дана функция y = 2x 2 − 2x − 4. a) Найдите значения f(2), f(−4). b) Известно, что график функции проходит через точку с оординатами (k; 2) . Найдите значение k.
6n/(3n+3)(3n+4)=1/10 Перемножаем крайние и средние члены пропорции 3n+3≠0; 3n+4≠0 3n²-13n+4=0 D=169-48=121=11² n=(13+11)/6=4 или n=(13-11)/6=1/3 второй корень не удовлетворяет условию задачи, так как является дробным числом.
О т в е т. при n=4 получаем 3n=3·4=12. Данное число 12.
Метод алгебраического сложения заключается в том, чтобы вычитая или же суммируя уравнения системы получить 1 уравнение с 1 неизвестным. Для этого в данном примере можно умножить первое уравнение на 3 с обеих сторон (заметим, что при этом значения неизвестных не изменятся, то есть полученное уравнение будет эквивалентно исходному). После этой операции система будет иметь такой вид:
Теперь, если отнимем от первого уравнения системы второе, то получим следующее: Как видите, мы получили уравнение с 1 неизвестным. Отсюда получаем , а х находим, подставив y в любое из уравнений системы. Удобнее в 1ое в данном случае. Получаем x + 4 * 5 = 9, откуда x = -11. ответ: x = -11; y = 5.
(3n-3)/(3n+3) - первая дробь;
(3n-4)/(3n+4) - вторая дробь.
Составляем уравнение
(3n-3)/(3n+3) - (3n-4)/(3n+4) = 1/10
Приводим к общему знаменателю
((3n+4)(3n-3)-(3n-4)(3n+3))/(3n+3)(3n+4)=1/10
или
6n/(3n+3)(3n+4)=1/10
Перемножаем крайние и средние члены пропорции
3n+3≠0; 3n+4≠0
3n²-13n+4=0
D=169-48=121=11²
n=(13+11)/6=4 или n=(13-11)/6=1/3
второй корень не удовлетворяет условию задачи, так как является дробным числом.
О т в е т. при n=4 получаем 3n=3·4=12. Данное число 12.