Напишите кубическое уравнение, корни которого обратны корням уравнения х³ - 6х² + 12х – 18 = 0, а коэффициент при х³ равен 2.1. По теореме Виета для кубического уравнения имеем: х₁ + х₂ + х₃ = 6, х₁х₂ + х₁х₃ + х₂х₃ = 12, х₁х₂х₃ = 18. 2. Составляем обратные величины данным корням и для них применяем обратную теорему Виета. 1/х₁ + 1/х₂ + 1/х₃ = ( х₂х₃ + х₁х₃ + х₁х₂)/х₁х₂х₃ = 12/18 = 2/3. 1/х₁х₂ + 1/х₁х₃ + 1/х₂х₃ = (х₃ + х₂ + х₁)/х₁х₂х₃ = 6/18 = 1/3, 1/ х₁х₂х₃ = 1/18.Получаем уравнение х³ +2/3х² + 1/3х – 1/18 = 0 · 2 ответ: 2х³ + 4/3х² + 2/3х -1/9 = 0.
Объяснение:
запись |х| <= 1 означает, что -1 <= x <= 1
(или другими словами ---эквивалентна двойному неравенству...)
значит для этих значений х нужно выбрать часть параболы (Вы ее правильно описали: из начала координат, ветви вниз): ветви параболы берем только до точек с абсциссами -1 и 1 (т.е. верхнюю часть параболы... от точки (-1; -1) до точки (1; -1))
аналогично для гиперболы...
|х| > 1 соответствует объединению двух интервалов: (-бесконечнось; -1) U (1; +бесконечнось)
из 3 квадранта возьмем только часть гиперболы,
соотв. интервалу на оси ОХ (-бесконечнось; -1) ---граница не входит... (т.к. |х| > 1)
из 1 квадранта возьмем часть гиперболы,
соотв. интервалу на оси ОХ (1; +бесконечнось) ---граница не входит... (т.к. |х| > 1)
(остальную часть гиперболы (или параболы) как-будто стираем...)
если нужно ---прикреплю рисунок...