Всего можно составить 24 четырехзначных числа
Из них, на 2 будут делиться 12 чисел, на 4 - 6 чисел, на 11 - 8 чисел.
Объяснение:
Из цифр 2, 4, 7, 9 можно составить 24 четырёхзначных числа, при этом цифры в числах повторяться не будут нам в этом формула перестановок из 4-х элементов:
Р₄=4! =4*3*2*1=24
Сколько же из них будут делиться на 2?
На 2 делятся чётные числа. Среди цифр 2, 4, 7, 9 есть две чётные цифры. Если на месте единиц "закрепить" цифру 2, а остальные три цифры переставлять местами, то получим 3!=3*2*1=6 таких четных чисел. То же повторяем с цифрой 4. Получаем ещё 6 чётных чисел. Всего получено 6+6=12 чисел, делящихся на 2.
На 4 делятся числа, если две его последние цифры нули или образуют число, делящееся на 4. Нулей среди имеющихся у нас цифр нет. Зато из цифр 2, 4, 7, 9 можно составить числа 24, 72 и 92, делящиеся на 4. По очереди "закрепляем" эти цифры в конце числа, а оставшиеся 2 цифры переставляем. Получаем Р₂*3 =2*3=6 чисел делящихся на 4.
Число делится на 11, если сумма цифр, которые стоят на четных местах, равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на 11.
11=2+9, 11=4+7
Числа 2 и 9 ставим на четные места, 4 и 7 - на нечётные места и наоборот, получаем 2*2*2=8 чисел:
2497, 2794, 9427, 9742, 4279, 4972, 7249, 7942
Итак, 8 чисел будут делиться на 11.
1) 3x² = 0 ⇒ х = 0
2) 9x² = 81 ⇒ х² = 9 ⇒ х₁= -3 и х₂ = 3
3) x² - 27 = 0 ⇒ х² = 27 ⇒ х = ⁺₋ √27 ⇒ х = ⁺₋ 3√3
4) 0.01x² = 4 ⇒ х² = 400 ⇒ х₁= -20 и х₂ = 20
2. Решить уравнения
1) x² + 5x = 0
х(х + 5) = 0
х₁ = 0 или х₂ = -5
2) 4x² = 0.16x
4x² - 0.16x = 0
4х (х - 0,04) = 0
х₁ = 0 или х₂ = 0,04
3) 9x² + 1 = 0
9x² = - 1 - НЕТ решения (корень из отрицательного числа НЕ существует)
3. Решить уравнения
1) 4x² - 169 = 0
4x² = 169
х² =
х₁ = -6,5 или х₂ = 6,5
2) 25 - 16x² = 0
16х² = 25
х₁ = -1,25 или х₂ = 1,25
3) 2x² - 16 = 0
2х² = 16
х² = 8
х₁ = -2√2 или х₂ = 2√2
4) 3x² = 15
х² = 5
х₁ = -√5 или х₂ = √5
5) 2x² =
х² =
х₁ = -0,25 или х₂ = 0,25
6) 3x² =
3х² =
х² =
х₁ = -1