Объяснение:
a + b = 5; ab = 3
a^3*b^2 + a^2*b^3 = a^2*b^2*(a+b) = (ab)^2*(a+b) = 3^2*5 = 9*5 = 45
(a-b)^2 = a^2 + b^2 - 2ab = a^2 + 2ab + b^2 - 4ab = (a+b)^2 - 4ab = 5^2 - 4*3 = 13
a^4 + b^4
Здесь сложнее. Сначала найдем
a^2 + b^2 = a^2 + 2ab + b^2 - 2ab = (a+b)^2 - 2ab = 5^2 - 2*3 = 19
Теперь найдем
(a^2 + b^2)^2 = a^4 - 2a^2*b^2 + b^4 = a^4 + b^4 - 2(ab)^2
a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2
Но мы знаем, что
(a^2 + b^2)^2 = 19^2 = 361.
Отсюда
a^4 + b^4 = (a^2 + b^2)^2 + 2(ab)^2 = 19^2 + 2*3^2 = 361 + 18 = 379
При решении этих неравенств надо понимать, что графиком квадратичной функции является парабола. Ветвями вверх или вниз. Если хорошо понимать, как проходит парабола,легко поставить знаки квадратичной функции и потом ответить на вопрос задания.
а) х² - 6х +8 > 0
Корни 2 и 4
-∞ (2) (4) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-∞;2)∪(5;+∞)
б) х² + 6х +8 < 0
корни -2 и -4
-∞ (-4) (-2) +∞
+ - + знаки квадратичной функции
решение неравенства
ответ: х∈(-4; -2)
в) -х² -2х +15 ≤ 0
корни -5 и 3
-∞ [-5] [3] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; -5]∪ [3; + ∞)
г) -5х² -11х -6 ≥ 0
корни -1 и -1,2
-∞ [-1,2] [-1] +∞
- + - знаки квадратичной функции
решение неравенства
ответ: х ∈ [-1,2; -1]
д) 9x² -12x +4 > 0
D = 0 корень один
х = 2/3
-∞ (-2/3) +∞
+ + знаки квадратичной функции
решение неравенства
ответ: х∈ (-∞; 2/3)∪ (2/3; +∞)
е) 4х² -12х +9 ≤ 0
D = 0, корень один х = 3/2
-∞ [3/2] +∞
+ + знаки квадратичной функции
∅