Пусть - канонический базис в
.
Тогда матрицу перехода можно найти следующим образом:
Если записать блочную матрицу и привести путем элементарных преобразований к виду
, то
Матрицу легко получить: достаточно записать в столбцы координаты векторов базиса
. Аналогично с матрицей
.
В итоге необходимо получить вид следующей матрицы:
Вычтем первую строку из второй и третьей:
Вычтем из первой строки 2 третьих и поменяем их местами:
Вычтем из третьей строки вторую:
Прибавим ко второй строке 2 третьих и вычтем из первой третью:
Делим вторую строку на 3:
Прибавляем в первой строке 2 вторых:
15км/ч
Объяснение:
я сокращу названия: дом=Д
автостанция=А
пусть скорость велосипедиста
от А до Д =х, тогда скорость
от Д до А=х+3. Зная, что расстояние от Д до А= 30км и разница во времени составила 30 минут, составим уравнение:
30минут=1/2часа
найдём общий знаменатель:
перемножим числитель и знаменатель соседних
дробей между собой крест накрест и получим:
х²+3х=90×2
х²+3х=180
х²+3х–180=0
Д=9–4(–180)=9+720=729
х1=(–3–27)/2= –30÷2= –15
х2=(–3+27)/2=24/2=12
х1 нам не подходит поскольку скорость не может быть отрицательной поэтому используем х2=12
Итак: скорость велосипедиста от А до Д=12км/ч, тогда скорость от дома до А=12+3=15 км/ч