Стороны прямоугольника равны 100 см и 64 см а) Найдите сторону квадрата, равновеликого данному прямоугольнику. б) В каждом из этих фигур провели диагональ. Будут ли они равносоставленными? ответ обоснуйте.
Выпишем все двузначные квадраты: 16, 25, 36, 49, 64, 81. Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649 Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.: Начинающееся на 3: 3649 на 4: 49 на 5 - таких чисел нет на 6: 649 на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7. на 8: - 81649 на 9: - нет. Итак, наибольшее: 81649.
Составим матем. модель ситуации. Для этого примем за х количество машин, которое завод должен был ежедневно выпускать по плану. Значит, заказ был на 20х машин. Но завод, делая в день по х+2 машины, выполнил заказ за 18 дней, т.е. выпустил 18(х+2) машины. Т.к. речь идет об одном и том же заказе, 20х = 18(х+2). Решим составленное уравнение: 20х = 18(х+2) 20х = 18х+36 20х - 18х = 36 2х = 36 х = 36 : 2 х = 18. ответ: по плану завод должен был выпускать 18 машин.
проверка: 18 машин × 20 дней (по плану) = 360 машин. 18+2=20 машин × 18 дней (на самом деле) = 360 машин. 360 = 360, т.е решение выполнено верно
Если это число начиналось с 1, то первые цифры только 16, значит 2-я и 3-я цифры - 64, после этого (3-я и 4-ая) может быть только 49. Дальше продолжать не можем, потому что нет двузначных квадратов, начинающихся с 9. Итак, максимальное число начинающееся с 1 и удовлетворяющее условию 1649
Аналогично для 2 получаем 25, т.к. на 5 двузначных квадратов нет. И т.д.:
Начинающееся на 3: 3649
на 4: 49
на 5 - таких чисел нет
на 6: 649
на 7: - таких нет, т.к. нет двузначных квадратов начинающихся с 7.
на 8: - 81649
на 9: - нет.
Итак, наибольшее: 81649.