а) Во-первых, выкидываем те из них, что начинаются с 0 (иначе это уже фактически 5-значные выйдут). Таких чисел (с фиксированной первой цифрой 0) 5! = 120.
б) Во-вторых, выкидываем те, которые оканчиваются на 0 (чтобы не было кратных 5): аналогично п. а) их тоже 5! = 120 штук.
в) В-третьих, выкидываем те, которые оканчиваются на 5 (тоже чтобы не было кратных 5): аналогично п. а) их тоже 5! = 120 штук. Но здесь стоит учесть нюанс: в п.а) мы уже отбросили числа, начинающиеся на 0 и при этом оканчивающиеся на 5. Всего таких чисел 4! = 24, поэтому в этом пункте итого вычесть надо 120 - 24 = 96 чисел.
f(x)=3x-x²-x³/3
f '(x) = 3 - 2х -х²
-х² - 2х + 3 > 0
Находим нули функции f '(x) = 3 - 2х -х²
-х² - 2х + 3= 0
D = 4+ 12 = 16
√D = 4
x₁ = (2 - 4): (-2) = 1
x₂ = (2 + 4): (-2) = -3
График функции f '(x) = 3 - 2х -х² - квадратная парабола веточками вниз. Это значит, что
при х∈(-∞; -3) f '(x) < 0
при х∈(-3; 1) f '(x) > 0
при х∈(1; +∞) f '(x) < 0
Неравенство f '(x) > 0 верно при х∈(-3; 1)