В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод: многочлен а³+3а²+2а кратен числу 6.
1а) Каждая монета может упасть либо орлом (О) либо решкой (Р), то есть две возможности.Монет всего 3.Тогда число возможных событий для 3-х монет равно 2^3=8.Вот варианты: (РРР) (РРО) (РОР) (ОРР) (ООР) (ОРО) (РОО) (ООО) Два раза орёл и один раз решка выпадает в трёх случаях (ООР) (ОРО) (РОО). Вероятность равна 3/8. 1б) Если монету бросают дважды, то возможны случаи (ОО) (ОР) (РО) (РР) Вероятность ХОТЯ бы один раз выпасть орлу равна 3/4. 2) Двойка выпадает с вероятностью 1/6 и пятёрка выпадает с вероятностью 1/6 . Вероятность того, что выпадет или 2 или 5 равна 1/6+1/6=2/6=1/3 б)Чисел, меньших 3, на кубике всего два.Чисел,не больших 3 (меньше или равно 3),на кубике всего 3.Вероятность события равна 2/6*3/6=6/36=1/6
a³+3a²+2a=a(a²+3a+2)=a(a+1)(a+2)
a²+3a+2=(a+1)(a+2)
D=3²-4*1*2=9-8=1
a₁=(-3+1)/2=-2/2=-1
a₂=(-3-1)/2=-4/2=-2
В итоге, мы получили произведение трёх подряд идущих чисел, среди которых обязательно найдётся хотя бы одно чётное число и число делящееся на три. Следовательно, произведение трёх подряд идущих чисел будет кратно 6. Т.к. итоговое произведение получено из исходного многочлена путём равносильных преобразований, то делаем вывод:
многочлен а³+3а²+2а кратен числу 6.