Нужно сравнить длины сторон треугольников
Для этого находим их по формуле расстояния между двумя точками
d=√((x2-x1)^2+(y2-y1)^2)
a)
AB=√((2+2)^2+(-1+1)^2)=√(16)=4
BC=√((-2-2)^2+(1+1)^2)=√(16+4)=√20
CA=√((-2+2)^2+(-1-1)^2)=√(4)=2
Стороны не равны, но сторона BC больше остальных, поэтому проверим выполняется ли на них теорема пифагора
(√20)^2=2^2+4^2
20=4+16
20=20
Теорема Пифагора выполняется, значит треугольник прямоугольный.
б)
AB=√((2+2)^2+(-2+2)^2)=√(16)=4
BC=√((0-2)^2+(1+2)^2)=√(4+9)=√13
CA=√((-2-0)^2+(-2-1)^2)=√(4+9)=√13
т.к. равны 2 стороны, то треугольник равнобедренный.
Решение по действиям:
1)) 12 : 3целых3/5 = (12 х5) / 18 = 10/3
2) 10/3 + 2/3 = 12/3 = 4
3) 4 х 0,6 = 2,4
4) 24 : 6,4 = 3,75
5) 3,75 - 2,4 = 1,35