-3.
Объяснение:
√(6 -2√5) - √(9+4√5) =
Заметтм, что каждое подкоренное выражение можно представить в виде квадрата суммы или разности:
6 -2√5 = 5 -2√5 + 1 = (√5)^2 -2•√5•1 + 1^2 =
(√5 -1)^2.
9 + 4√5 = 5 + 4√5 + 4 = (√5)^2 + 2•√5•2 + 2^2 =
(√5 + 2)^2.
Именно поэтому решение запишется так:
√(6 -2√5) - √(9+4√5) = √(√5 -1)^2 - √(√5 + 2)^2 = l√5 - 1l - l√5 + 2l
Выражения, записанные под знаком модуля положительные, знак модуля опускаем, не меняя знаки слагаемых в скобках:
(√5 - 1) - (√5 + 2) =
Упрощаем получившееся выражение:
√5 - 1 - √5 - 2 = -1 -2 = -3.
ответ: -3.
Использованные тождества:
а^2 - 2аb + b^2 = (a-b)^2;
а^2 + 2аb + b^2 = (a+b)^2;
√(a)^2 = lal.
В решении.
Объяснение:
Формула координат вершины параболы:
х₀ = -b/2a
y₀ = (4ac - b²)/4a, или просто подставить вычисленное значение х₀ в уравнение функции и вычислить значение у₀.
1) у = х² -10х + 20
х₀ = -b/2a
х₀ = 10/2
х₀ = 5;
у₀ = 5² - 10*5 + 20 = 25 - 50 + 20 = -5.
Координаты вершины параболы (5; -5). Ветви вверх.
2) y = -x² + 3x - 4
х₀ = -b/2a
х₀ = -3/-2
х₀ = 1,5;
у₀ = -(1,5)² + 3*1,5 - 4 = -2,25 + 4,5 - 4 = -1,75.
Координаты вершины параболы (1,5; -1,75). Ветви вниз.
3) у= -х² + 6х - 7
х₀ = -b/2a
х₀ = -6/-2
х₀ = 3;
у₀ = -(3)² + 6*3 - 7 = -9 + 18 - 7 = 2.
Координаты вершины параболы (3; 2). Ветви вниз.
4) у = 3х² - 6х + 1
х₀ = -b/2a
х₀ = 6/6
х₀ = 1;
у₀ = 3*1² - 6*1 + 1 = 3 - 6 + 1 = -2.
Координаты вершины параболы (1; -2). Ветви вверх.
5) у = -0,2х² + 4х
х₀ = -b/2a
х₀ = -4/-0,4
х₀ = 10;
у₀ = -0,2*10² + 4*10 = -0,2*100 + 40 = -20 + 40 = 20.
Координаты вершины параболы (10; 20). Ветви вниз.