В левой части можно применить формулу косинуса двойного угла:
В правой части можно заменить по формуле приведения:
Тогда уравнение будет выглядеть так:
Используем формулу суммы косинусов:
В нашем случае получается:
Так как , то:
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Значит, имеем два варианта:
Теперь подбираем корни, которые принадлежат отрезку . Для этого можно решить двойное неравенство для каждой серии корней.
Для первой серии:
Не забываем, что - это обязательно целое число. В данном промежутке есть только одно такое: 2. Значит, . Подставляем это значение в серию корней, для которой мы решали неравенство.
Одно искомое уже нашли. Теперь тем же самым образом проверим вторую серию корней.
Опять же, учитывая то, что - целое число, данное неравенство НЕ ИМЕЕТ РЕШЕНИЙ, поскольку в получившемся промежутке нет целых чисел.
Итого мы нашли одно значение, которое одновременно и является корнем уравнения, и входит в промежуток , а именно .
1а) Каждая монета может упасть либо орлом (О) либо решкой (Р), то есть две возможности.Монет всего 3.Тогда число возможных событий для 3-х монет равно 2^3=8.Вот варианты: (РРР) (РРО) (РОР) (ОРР) (ООР) (ОРО) (РОО) (ООО) Два раза орёл и один раз решка выпадает в трёх случаях (ООР) (ОРО) (РОО). Вероятность равна 3/8. 1б) Если монету бросают дважды, то возможны случаи (ОО) (ОР) (РО) (РР) Вероятность ХОТЯ бы один раз выпасть орлу равна 3/4. 2) Двойка выпадает с вероятностью 1/6 и пятёрка выпадает с вероятностью 1/6 . Вероятность того, что выпадет или 2 или 5 равна 1/6+1/6=2/6=1/3 б)Чисел, меньших 3, на кубике всего два.Чисел,не больших 3 (меньше или равно 3),на кубике всего 3.Вероятность события равна 2/6*3/6=6/36=1/6
В левой части можно применить формулу косинуса двойного угла:
В правой части можно заменить по формуле приведения:
Тогда уравнение будет выглядеть так:
Используем формулу суммы косинусов:
В нашем случае получается:
Так как , то:
Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Значит, имеем два варианта:
Теперь подбираем корни, которые принадлежат отрезку . Для этого можно решить двойное неравенство для каждой серии корней.
Для первой серии:
Не забываем, что - это обязательно целое число. В данном промежутке есть только одно такое: 2. Значит, . Подставляем это значение в серию корней, для которой мы решали неравенство.
Одно искомое уже нашли. Теперь тем же самым образом проверим вторую серию корней.
Опять же, учитывая то, что - целое число, данное неравенство НЕ ИМЕЕТ РЕШЕНИЙ, поскольку в получившемся промежутке нет целых чисел.
Итого мы нашли одно значение, которое одновременно и является корнем уравнения, и входит в промежуток , а именно .
ответ: