1) 4x² + 7x + 3 = 0 D = 49 - 4*4*3 = 49 - 48 = 1 √D = 1 x1= ( -7+1)/8 = - 6/8 = - 3/4 x2= ( -7- 1)/8 = - 8/8 = -1 Тогда по теореме о разложении квадратного трехчлена на множители 4x² + 7x + 3=4(х +1)(х + 3/4) 2) x² + bx +4 = 0 1. Предположим, что уравнение имеет два различных корня, один из которых равен 3, тогда по теореме Виета: х1 +х2 = - b => 3 + х2 = -b => х2 = -b - 3 => х1*х2 = 4 3*х2 = 4 х2 = 4/3 ( пусть х1=3 )
=> -b - 3 = 4/3 -b = 4/3 + 3 -b = 4 1/3 b = - 4 1/3 => при b = - 4 1/3 уравнение имеет два корня, один из которых равен 3.
2.Уравнение имеет два различных корня, если D>0, D = b² - 4*1*4 = b² - 16 b² - 16 > 0 (b - 4)(b + 4) > 0 b < -4 или b > 4 Уравнение имеет два различных корня, если b < -4 или b > 4.
ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.