1) Строить график не буду, объяню как решать.
y = -x^2+4x - квадратичная функция
График - парабола, ветви вниз, т.к. перед x^2 отрицательный коэффициент.
Вершина параболы
x(0) = -b/2a = -4/2*(-1) = -4/-2 = 2
y(0) = 4
Таблица значений
x|0|1|2|3|4
y|0|3|4|3|0
Строишь по клеткам параболу.
а)
Значение функции = значение на оси Оу
На оси х находишь точки 0 и 3 проводишь пунктирную линию к графику.
Получается
у наиб = 3
y наим = 0
б) y возрастает на примежутке ( минус бесконечность; 2]
убывает на промежутке [2; +бесконечность);
в)4x^2 - x^2 < 0
4x^2 - x^2 = 0
3x^2 = 0
x^2 = 0
x = 0
x (0; + бесконечность)
=x2+5x−6;y=x2+2∗5x/2+(5/2)2−(5/2)2−6;y=(x+5/2)2−49/4
Это парабола, которая вверх, координаты вершины (-2.25;-12.25), ось симметрии x=-2.25. Найдём точки пересечения с осями:
\begin{gathered}y(0)=0^2+5*0-6=-6\\x(0)=б\sqrt{\frac{49}{4} } -5/2=\left[\begin{array}{ccc}(7-5)/2\\(-7-5)/2\\\end{array}=\left[\begin{array}{ccc}1\\-6\\\end{array}\end{gathered}
У нас есть всё чтобы построить график.
Видно, что он лежит во всех четвертях, но больше всего в 1 и 2.