М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ben29
ben29
28.04.2022 00:42 •  Алгебра

3Токсан БЖБ Алгебра 8Класс
Бызге нускамен Берген брак келет


3Токсан БЖБ Алгебра 8Класс Бызге нускамен Берген брак келет
3Токсан БЖБ Алгебра 8Класс Бызге нускамен Берген брак келет
3Токсан БЖБ Алгебра 8Класс Бызге нускамен Берген брак келет

👇
Открыть все ответы
Ответ:
даша3648
даша3648
28.04.2022

Неполные квадратные уравнения, к которых коэффициент c=0, то есть уравнение имеет вид ax²+bx=0.

Такие уравнения решаются разложением левой части уравнения на множители.

\[a{x^2} + bx = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (ax + b) = 0\]

Это уравнение — типа «произведение равно нулю«. Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем к нулю каждый из множителей:

\[x = 0;ax + b = 0\]

Второе уравнение — линейное. Решаем его:

\[ax = - b\_\_\_\left| {:a} \right.\]

\[x = - \frac{b}{a}\]

Таким образом, неполное квадратное уравнение вида ax²+bx=0 имеет 2 корня,один из которых равен нулю, а второй — -b/a.

Примеры.

\[1){x^2} + 18x = 0\]

Общий множитель x выносим за скобки:

\[x \cdot (x + 18) = 0\]

ДОЛЖНО БЫТЬ ПРАВИЛЬНО

4,4(63 оценок)
Ответ:
zzz26101973
zzz26101973
28.04.2022

Объяснение:

Последовательность называется возрастающей, если для любого n∈N выполняется неравенство yn<yn+1.

Последовательность называется убывающей, если для любого n∈N  выполняется неравенство yn>yn+1.

Выпишем n-й и n+1-й члены последовательности: yn=n213n, yn+1=(n+1)213n+1.

 

Чтобы сравнить эти члены, составим их разность и оценим её знак:

yn+1−yn=(n+1)213n+1−n213n=(n2+2n+1)−13n213n+1=2n+1−12n213n+1

 

Для натуральных значений n справедливы неравенства 2n≤6n2 и 1<6n2.

Сложив их, получим 1+2n<12n2, т.е. для любых натуральных значений n справедливо неравенство 2n+1−12n213n+1<0, значит, yn+1−yn<0.

 

Итак, для любых натуральных значений n выполняется неравенство yn+1<yn,

а это значит, что последовательность (yn) убывает.

4,4(21 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ