М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
арина1138
арина1138
21.06.2020 00:38 •  Алгебра

Сказали что я обвела не все правильно, надо обвести правильные


Сказали что я обвела не все правильно, надо обвести правильные

👇
Ответ:
DavidWorld
DavidWorld
21.06.2020

tg α = u:h

tg β = m:n=h:u

tg γ = n:m=h:t

4,5(4 оценок)
Открыть все ответы
Ответ:
Арусяк111
Арусяк111
21.06.2020
1) Замена x^2 + 4 = y > 0 при любом х
y^2 + y - 30 = 0
(y + 6)(y - 5) = 0
Обратная замена
а) x^2 + 4 = -6 < 0; решений нет
б) x^2 + 4 = 5; x^2 = 1; x1 = -1; x2 = 1

2) Замена x^2 - 8 = y
y^2 + 3,5y - 2 = 0
2y^2 + 7y - 4 = 0
(y + 4)(2y - 1) = 0
а) x^2 - 8 = -4
x^2 = 4; x1 = -2; x2 = 2
б) x^2 - 8 = 1/2; x^2 = 8,5; x3 = -√(8,5); x4 = √(8,5)

3) Замена x^2 + 1 = y > 0 при любом х
y^2 + 0,5y - 5 = 0
2y^2 + y - 10 = 0
(y - 2)(2y + 5) = 0
Обратная замена
а) x^2 + 1 = -5/2 < 0; решений нет
б) x^2 + 1 = 2; x^2 = 1; x1 = -1; x2 = 1
4,7(49 оценок)
Ответ:
Нам нужно доказать, что √17 является иррациональным числом.
Пусть оно является рациональным числом.
Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая.
Возведя в квадрат, получаем, что 17 = m²/n²
Тогда 17n² = m²
Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число.
Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число. 
4,4(2 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ