sin⁴(π/16) + sin⁴(3π/16) + sin⁴(5π/16) + sin⁴(7π/16) = (1 - cos(π/8))²/4 +
+ (1 - cos(3π/8))²/4 + (1 - cos(5π/8))²/4 + (1 - cos(7π/8))²/4 = (1/4) •
• ( 1 - 2cos(π/8) + cos²(π/8) + 1 - 2cos(3π/8) + cos²(3π/8) + 1 - 2cos(5π/8) + cos²(5π/8) + 1 - 2cos(7π/8) + cos²(7π/8) ) = (1/4) • ( 4 - 2•( cos(π/8) + cos(3π/8) + cos(5π/8) + cos(7π/8) ) + ( cos²(π/8) + cos²(3π/8) + cos²(5π/8) + cos²(7π/8) ) ) = (1/4) • ( 4 - 2•( 2•cos(π/2)•cos(-3π/8) + 2•cos(π/2)•cos(-π/8) ) + ( cos²(π/8) + cos²(3π/8) + cos²(5π/8) + cos²(7π/8) ) ) = 1 + (1/4)•( cos²(π/8) + cos²(3π/8) + cos²(5π/8) + cos²(7π/8) ) = 1 + (1/4)•( ( cos(π/8) + cos(7π/8) )² + ( cos(3π/8) + cos(5π/8) )² - 2•cos(π/8)•cos(7π/8) - 2•cos(3π/8)•cos(5π/8) ) =
= 1 - (1/4)•( cosπ + cos(-3π/4) + cosπ + cos(-π/4) ) = 1 - (1/4)•( - 2 - (√2/2) + (√2/2) ) = 1 - (1/4)•(-2) = 1 + 0,5 = 1,5
ответ: 1,5
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.