Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым:
abcd=1000a+100b+10c+d
dcba=1000d+100c+10b+a
По условию:
abcd-dcba=909
1000a+100b+10c+d-1000d-100c-10b-a=909
999a-999d+90b-90c=909
999(a-d)+90(b-c)=909
111(a-d)-10(c-b)=101
Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит:
111-10(c-b)=101
10(c-b)=10
c-b=1 ⇒
a=d+1, из чего видно, что d≤8
c=b+1, из чего видно, что b≤8
Есть еще условие, что сумма цифр кратна 3.
a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=6n максимально возможное 30d+b=14 Подбираем максимальное: а=9 d=8 b=14-8=6 c=7 9678-8769=909
ответ:
cost=(x–2)/3
{sint=(y–3)/2
возводим в квадрат и складываем
это эллипс.
(x–2)2/9+(y–3)^/4=1
этот эллипс равновелик эллипсу
(x2/9)+(y2/4)=1
параметрическое уравнение которого
{x=3cost
(y=2sint
[0; 3] на оси ох получаем
если t1=π/2 и t2=0
в силу симметрии достаточно вычислить четвертую часть искомой площади, результат умножить на 4.
s=4·∫0π/2 y(t)·xtdt=
= –4∫π/2 0 (2sint)·(–3sint)dt= 24∫π/2 0 (sin2t)dt=
= 24∫π/2 0 (1–cos2t)/2dt=
=12t|π/2 0 –(3sin2t)|π/2 0 =6π