Объём работы положим равным единице, скорость (производительность) первого равна v1, второго v2. Условие про разницу в один день: (1/v1) + 1 = 1/v2. Условие про совместную работу: (v1+v2)*1=5/6. Решаем эту систему. Из второго уравнения выражаем v1=(5/6)-v2 и подставляем в первое уравнение. После упрощений получаем квадратное уравнение относительно v2: 6(v2)^2 -17v2+5=0, решаем его стандартно и получаем два корня: v2=2,5 или второй корень v2=1/3. Теперь для каждого из этих корней надо найти ему пару - то есть скорость первого трактора. Используем формулу (была написана выше) v1=(5/6)-v2 и получаем в первом случае v1=-5/3 - не подходит, так как отрицательное число (получается, что первый трактор не распахивает поле, а запахивает его обратно), а для второго корня (v2=1/3) получаем v1=1/2. Таким образом, время второго равно 1/v2=3 дня. Проверка: в исходное условие (v1+v2)*1=5/6 подставляем v1 и v2 и получаем верное равенство.
Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
5/m^2-n^2+4/2m+2n=5 / (m-n)(m+n) + 4 / 2(m+n) = 5 / (m-n)(m+n) + 2 / (m+n) =
= 5 / (m-n)(m+n) + 2(m-n) / (m+n) (m-n) = 5 + 2(m-n) / (m+n) (m-n)=
= 5+2m-2n / m^2-n^2
Объяснение: