1) Построим графики у=(х-2)^2 и у=(х+2)^2 а) у=(х-2)^2=x^2-4x+4 (график - парабола, ветви вверх) 1. Найдем точки пересечения с осью Ох x^2-4x+4=0; D=16-16=0; х=2 2. Вершина имеет координаты (2;0) 3. Пересекается с осью Оу в точке (0;4) 4. Построим график (см. рисунок) б) у=(х+2)^2=x^2+4x+4 (график - парабола, ветви вверх) 1. Найдем точки пересечения с осью Ох x^2+4x+4=0; D=16-16=0; х=-2 2. Вершина имеет координаты (-2;0) 3. Пересекается с осью Оу в точке (0;4) 4. Построим график (см. рисунок) в) Проведем прямую у=1 2) Найдем площадь фигуры ограниченной параболами и прямой у=1 (заштрихована на рисунке) Площадь найдете как сумма трех интегралов
1) f(x) = x²+2x
Первообразная F(x) = ∫f(x) +C = ∫(x²+2x)dx + C = x³/3 + x² + C
2) S(t) = -t² + 10t - 7
Мгновенная скорость V(t) = S'(t) = -2t + 10